PMM U.S.S.R.,Vol.47,No.3,pp. 335-340,1984 0021-8928/84 $10.00+0.00
Printed in Great Britain © 1984 Pergamon Press Ltd.

UDC 531.36:534.1

ON THE EXISTENCE OF SEPARATRIX LOOPS IN FOUR—DIMENSIONAE SYSTEMS
SIMILAR TO THE INTEGRABLE HAMILTONIAN SYSTEMS

L.M. LERMAN and Ia.L UMANSKII

A method analogous to the V.K. Mel'nikov method /1/ is used to derive the conditions
of existence of separatrix loops of the saddle~focus type singularity, for the
systems similar to the integrable Hamiltonian systems. Many important and interest-
ing effects appearing in the dynamic systems are connected with the presence of
loops in the separatrices of the singularities. For example, a system with a loop
of a saddle-focus separatrix with the positive saddle value has an enumerable set
of periodic saddle-type motions /2/; the appearance of the saddle separatrix loops
can represent the first of a sequence of bifurcations leading to the appearance of
an attractor /3/. The existence of a separatrix loop in a finite-dimensional system
describing the travelling wave-type solutions of partial differential eguations im-
plies the presence of a soliton solution in the latter system /4/.

1. Let us consider in R*! the Hamiltonian system
£ = IVH, () (1.1)

with a smooth Hamiltonian H,(x) where [ is a (4 X 4) matrix in which @y = f = — g;3 =
— @54 = 1 and the remaining elements are egual zerc, and VH, (z) is the gradient vector of
the function H;{(2). In what follows, when we say smooth, we mean the (™ -smoothness unless
otherwise stated. We assume that the system (1.1) is integrable, i.e. a smooth function H, (z)
exists, representing the first integral of the system. This means that the Poisson's bracket
{H,, H,} = (IVH,, VH,) of the functions H and H, is equal to zero, where (., .) denotes the
standard scalar product in R Sometimes we shall consider, together with the system {1.1),
a Hamiltonian system with the Hamiltonian H,(z). We assume that the above systems generate
dynamic systems, i.e. every trajectory is continued onto all (& R', A sufficient condition
for this is e.g. the condition that the levels of one of the integrals be compact subsets in
R,

Let the coordinate origin O be a singularity of the system (1.1), the roots of the
characteristic equation of which are =% @, = if;, @,-B; 5 0 (the singularity is of the saddle-
focus type). From the theorem on a stable manifold /5/ it follows that smooth, two-dimension—
al stable Wo' and unstable Wo* invariant manifolds of the singularity Qexist. The functions

H, {z}) and H,{(r) can be simultaneously reduced by a linear variable change to the form { old
notation is retained for the new coordinates)

Hy () = Hy (0) + ax (1@ + Poge) — B (g2 — Po) + Fr (@), Fr@ =o(Jz|’); k=12

In what follows, we assume:

A) the quantity 1= @,f, — a,B; % 0;

B) a trajectory 7C Wo'[] We* exists doubly asymptotic to O,
Condition A) means that H, and H, are independent in some neighborhcod U/ of the point O {(ex-
cept, of course, for the point O itself), i.e. the vectors IVH, (x) and JVH,(z) are linearly
independent (**). We shall call such a singularity nondegenerate.

Proposition 1. Let conditions A) and B) hold. Then the closures of the manifolds W'
and Wi" coincide, i.e. all trajectories in W¢* — {0} (and in Wo* — {0} } are doubly asymptot-
ic to O,

Proof. Let f(¢:;2) be a trajectory of the system (1.l1) passing through the point =z at
=0, and let g(s;2 be the analogous trajectory of the system with the Hamiltonian H,.

*Prikl.Matem.Mekhan.,Vol.47,Nc.3,pp. 395-401,1983
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Since {H,, H;} =0, we have /(i g(s;2) =g (s;/(t ) [6]. Therefore we can determine the acticn of
the group R? on the phase space R* using the formula Dt s 2= f(6 gt ), (4, 9 = R Any two
orbits of the action either do not intersect, or they coincide. As was shown before in (**),
the manifolds W, — {0} and Wy — {0} are two~dimensional orbits of the action ®. The exist~
ence of the doubly asymptotic trajectory vy implies that the above two-dimensional orbits in-
tersect, therefore they must coincide, and this completes the proof. Thus when conditions A)
and B) hold, a one-parameter family of trajectories doubly asymptotic to the point O exists
in the system (l1.l). We denote the set of points R* through which the trajectories of the
family pass, by W,.

2. Let us consider a perturbed system
z' = IVH, (z) + p (z, &), e = B™ (2.1)

where p(z, & is a function ("-smooth in e (k>>2) and smooth in z p(z,0) =0. We shall
also assume, without loss of generality, that p(0,e) = 0. We construct in the neighborhood
U of the point O a secant to the trajectory of the system (2.l). Restriction of (1.1) to W¢
has a coarse focus-type singularity, therefore a smooth closed curve ¢ can be chosen on W,
transverse to the trajectories. Let &,(8) be the parametric description of the curve o (0 <
6 < 2n). We take, at every point of =z,(8), a two-dimensional plane Ng stretched over the
vectors VH;(z,(8)) (f =1,2). The plane Ng is orthogonal to the plane tangent to the manifold
Wo* at the point z,(8), since the tangent plane is generated by the vectors I[VH, (z, (6)) and
IVH, (z, (9)). Using this fact we can show that p >0 exists such, that the union (over @) of
the two-dimensional discs |z —2,(0) | <pu belonging to Ng forms a three-dimensional secant
N homeomorphic to the full torus R? x S'. Clearly, N remains a secant for the svystem (2.l)
at sufficiently small [ el.

When &= 0, the trace of Wi’ on N is represented by the curve ¢, which is also the trace
of Wo*on N, Since the stable manifold of the coarse equilibrium state depends smoothly on
the parameter, it follows that when esz£ 0, then the stable manifold W:® of the singularity

O intersects transversally with N, and this intersection is therefore a smooth closed curve
o close to 0. The smooth curve oe° = Wg*[IN is determined in the same manner. The loops
of the separatrices correspond to the general points of the curves o¢ and o0:*. From this
it is clear that, generally speaking, the curves o¢’ and o:" do not intersect at fixed &350,
However, if instead of an individual perturbed system we consider an at least two-parameter
family of perturbations, then curves may exist in the parameter space with points to which
systems with separatrix loops correspond.

For the Hamiltonian perturbations p(z, &) = IV K (z, &) the manifolds W.' and W;" lie on
the set I, defined by the equation H,(z) + K (z,¢) = H, () + K(0, ¢). In the neighborhood of
the set W,,Z, is a small, three-dimensional submanifold everywhere except at the point 0O,
and the intersection of X, and N is homeomorphic to a two-dimensional ring. The curves o¢
and o0:" lie in this ring, and for this reason it is sufficient to consider a one-parameter
family of perturbations. Below we shall discuss both cases.

3. Let us consider a perturbed system of the form (2.1), where &= (g, &) belongs to
the neighborhood of the zero in R® We denote by (¢, ) the trajectory belonging to W,
and intersecting, at t =1( , the plane Ng. Such a trajectory exists and is unique. We
determine the trajectorvy z.*(t, 9) in the same manner. The functions z’ (t. 0). =" (¢. 8) are
smooth in t and # and C"-smooth in ¢, and can therefore be written in the form

I N
Tt 0)=2y(t, 0) - D enE (2, 0)-- ay(t, 0,8); n=s,u; n=(lm (3.1
fnl=t

" =ele™ (nl =14 m 550 0) =8 m(t, 8) & (0, 0, &) = o (| ef"

where z,(t, ) is a trajectory of the system (1) lying on W' and intersecting Ng at &=
(at the point z,(8)), and | and m are nonnegative integers.

Lemma 1. The vector function E§,* (¢, 0) (% =3, u) is a solution of the following system of
differential equations:

£ = [d2H, (z, (t, 0) &+ Py (2, (&, 0), Ex0* (6, 0),. ., &% (2, 0), . ... Ejmies (2 6)) (3.2)

where /I, () is the matrix of the second derivatives of the function Hy), i —J]< [n|—1
and the smooth vector function P, is determined by the right-hand part of the system (2.1).
The solution satisfies the conditions 1) §.*(0, )= Ng; 2) £° (¢, ) -0 as ¢ — oo, gt (t, 8) =0
as t—— o, and is unique.

The proof of this lemma is analogous to that of Theorem 4 in /1/, therefore we shall only
give it outline. Equations {(3.1) for §&,(: 1) are obtained by substituting (3.1) into (2.1),
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differentiating the resulting identity ! times with respect to & and m times with respect to
¢, and setting e =¢f=0 in the resulting identity. Condition 1) is obtained from (3.1) by
setting =0 and taking due regard to the fact that i« (0.9) and =z,(0, 0) belong to N4 at all
. Condition 2) follows from the usual estimates for the solutions lying on a stable mani-
fold /7/. The uniqueness of the solution with conditions 1) and 2) follows from the fact that
system (3.2) possesses an exponential dichotomy of solutiocns.
Let us introduce the functions

Ay 8, &) = (VH; (2, 0), e’ (0) — z (8)) (i = 1,2), z* (8) = ze* (0, 6)

The vector gz (8) — " () clearly belongs to Ng. Therefore, by virtue of the linear independ-
ence of the vectors VH (zo (0)) (i =1, 2), A2+ A2 =0 if and only if 2z°(8)=az"(0), i.e. the
zeros of the system of equations A, (8, &) =0, A, (8, &) = 0 are in one-to-one correspondence

with the single circuit loops of the separatrices of the singularity 0.

Let us obtain explicit expressions for A, (0, &) and A, (0, from the right-hand parts
of the system (2.1). To do this we consider the functions D; (t 0, &) = (VH; (z, (¢, 0)), z° (t,
8 — z" (z, 8)). Clearly, D;(©, 8, g = A; {8, &). Below we shall write for simplicity &*H,, VH,;
to denote d*H,; (z, (t, 9)), VH; (2, (t, 0)) respectively, and
P-n,:K = Pn (.’to (tv 6)7 me (tv 9)1 ..y Eij“ (t’ e)v- « E:- In]-1 (t’ 9))

Then

Dit, 8, e) = (VH;, z*(t. 0)) — (VHy, 2 (, 0)) =D# (1, 6, &) —De*(t, 6, &) (3.3)
In turn, by virtue of Lemma 1 we have

K
D*(t,8,8) = (VH;, 2o (£, 0)) + Z e (VH;, E.*(¢, 0)) -+ (3.4)

(VH,, ax (t, 8, €)) = Ao (£, 0) + 2 ™A%, (£,0) -+ 8, (t, 0, ¢)
For |n|> 1 we have
~& A% (¢, 0) = (d*H; - IVH,, E,* (£, 0)) -+ (VH,, Id*HE,* (2, 0) -+
Py = (d2H;- IVHy, B2 (1, 0)) & (VHy, IdH g (8, 8)) + (VHy, Po¥)
and for i=1 we cbtain

T (t,8) = (d*H- IVH,, 5% (¢, 8)) — (d2H, - IVH,, 8% (1, 0)) - (VHy, Py)=(VHy, Pr¥)

where we utilized the fact that the matrix d?H, is symmetric and matrix [/ is skew symmetric.
For i = 2 we have

':T A (8, 0)=(d*H,-IVHy, £% (8, 0)) + (VHy, Id2HaE% (¢, 6) 4 (VHa, P,¥)
Let us make use of the identity obtained by differentiating in z the identities (H,, H,) =

(IVH, (z), VH, (z)) = 0. Then
on (t, 8) = (VHy, Py¥)

Integrating the resulting equations for A;,'(¢t, 0) in ¢ from 0O to + oo and using conditions 2) of
Lemma 1, we obtain

A%, (0,0) = S (VH,, P dt

and similarly

£

A% 0,0)= § (VH,, P.¥ar

We note that

§ U [ s
Plo= Ply = (20(2,6),0), Pg=Ph= _g_fz_(zo . 8),0

Subsituting the resulting expressions into (3.3), taking (3.4) into account and setting 1t =0,
we obtain

K 3
A (8, 8) = —&1diy ~— €adiz — z e” [S (VH,, P,%dt +
0

in|==2
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0

§ (VH, P dt] + (VH,, 0,(0,6,8) — a,(0,6,2)

—cc

(di,(8)= § (VHi,—gé’T(zo t.8),0)dt, 1,j=1,2)

/

Theorem 1. Let
B (8) = dyydyy — digdy = 0, 2d;; (8,) 5= 0, B (8,)5% 0

at 6 =08,. Then a neighborhood of the point (8,, 0, 0) &[0, 2 n] x R* exists in which the
solution of the system of equations A; (8, ¢) =0, A, (8, &) =0 is a smooth curve of the form
e =file) 0 =g () or & =f,(e) 0=g(c) (1(0) =g (0) —8, =0, i =1, 2).

Proof. We assume for definiteness that d,,(8,) 0. The system has a curve of solu-
tions e, =0, &, = 0, therefore point (@,,0,0) is a solution of the system. By virtue of the
theorem on implicit functions there exists a neighborhood of this point in which the first
equation has a solution e, =#4 (0, ¢;). We substitute this solution into the second equation to
obtain A, (8, e,k (0,8))= ¢ (0, &) = 0. The point (8,, 0) is a nondegenerate critical saddle
point of the function ¢ (8, ). Indeed, at the point (8,, 0)

B __ A, by 0Ay [ 0y
39 "T“"E&TT( e,
since A;(6,0,0)=0 (i = 1,2).

The determinant of the matrix of the second derivatives of the function ¢ (8, &) at the
point (8,, 0) is equal to [B'(B,)diz™' (8,)]12<<0. Since the equation ¢ (0, &) = 0 has a solution
g, =0, it follows that in some neighborhood of the point (0,, 0) we also have the solution
8 =g (&), &1 0) = 8,. For the initial system of equations we obtain the solution &, = k (g, (g,),

&) = f, (e), 8 = g, () , and this completes the proof of the theorem.

-1 Fil —
) =0, $E=B@®,)di0)=0

Corollary. A neighborhood of the point (0, 0) exists in the (g, &)-parameter space
such, that every zero of the function B (0) corresponding to conditions of Theorem 1 has a
corresponding smooth bifurcation curve passing through the point (0, 0) and corresponding to
the loop of the separatrix of the singularity, intersecting the secant N at a unique point
(single circuit! loop) .

Note. By virtue of the results of /2/ an enumerable set of “multicircuit" loops, i.e.
loops intersecting N more than once, exists in the neighborhood of the single circuit loop of
separatrix.

4. Let us consider the system (2.1). with Hamiltonian perturbation, i.e. px, &) = IV K (x,
g, e= R'. As in Sect.3, we introduce the functions A (6, &) and 4, (6, & which, in  the
case of a one-parameter family of perturbations, have the form

601: (%0 (¢,8), 0) ) dt —

Aj(0,8)=—¢ § (VHi, v

oo

ia" (§vm, pyac+ S (VH,, Py dt)
=N M

(VH;,a,(0,0,8) —ayu (0,0,8)) = —ed; (0) + . ..

Lemma 2. There exists &, >0 such that A,(8, &) =0 when |e|{<<eg, if and only if
ze' (B) = " (9).

Proof. 1In the course of proving the lemma we write VH;(z, (8)) = Vii; (i=1,2). The suffic-
iency of the conditions of the lemma is obvious. To prove the necessity we assume that
z,°(0) =2, (8 for some fixed 6 and ¢ (the quantity e shall be chosen below). We introduce, on
the two-dimensional disc N, , the coordinates given by the formula z =z, (8) -+ £ VH, +1VH,. The
points z,(0) and z.%(9) lie on the curve described by the equation

R (¢, 8) = Hy (2 (0) + EVH, 4 nVH,) - K (20 8) + EVH, - nVHz 8) — Hy (0) — KO, ¢)

We can apply the theorem on implicit functions to this equation, since R (0, 0, 0)=10, as RS0,
0, 0) = (VH,)* % 0. Solving the equation for §, we obtain &= ® (1, ¢). Using the coordinates defin-
ed above, we can write z,25®) and =z*(®) in the form

z’ 8) = z, (8 + & VH, + n,VH,, z 4 0) = z, (8) + EuVH) 4+ 1, VH,

therefore we have
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EA ® —z20) = (s — 8w VH, + (s — M) VH, =
(@ (M5, &) — D (M, €)) VH; 4 (s — ) VH, =
(@ (Mar © VHy + VH) (1 — 1)

The derivative @, (0, 0)= — (VH,, VH,)/ (VH,)*=0, therefore we have

VH,, VH
2@ -0 = [~ (L + 0w o) Vi + V8. ] (1, — )

where pm,, &) —0 when |n,|+|e|—0. By definition we have =z (9) £z, (0), therefore n,— 1M, 0.
Scalar multiplying both sides of the last equation by VH,, we obtain

T (VH,, VH,
Az (8,8) = (n, — M) RRIZCAC (V[l]l)z ) + P (. €) (VHy, VHQ)]

where T (VH,, VH,) is the Gramm determinant (different from zero, since the vectors VH, and
V H, are linearly independent); 9%,—0 as &—0, therefore A,=0 at sufficiently small e
which contradicts the initial assumption. The lemma implies that in the case of Hamiltonian
perturbations the splitting of the separatrix surfaces is determined by the zeros of a single

function A, (6, €).

Theorem 2. Let d,(8y) =0, do’ (8,) %= 0. Then a neighborhood of the point (B, 0) = [0,
2a] %« R' exists, in which the egquation A, (8, ¢) =0 has a unique solution 6 = f (&), f (0) = 0,.

Proof. The point (0,, 0) is a nondegenerate critical saddle point of the function A, (8,
g), since at this point

A op, A, #A ,
fe= B = e = T 0, T2 4y (p,) 50

Since the equation A, (8, €) =0 has a solution & =0, therefore it also has the solution
O =7(e) 7(0) =04

Note. It can be shown that on the set of the level X  the manifolds W, and W, inter-
sect transversally along the loop of a separatrix existing, according to Theorem 2, when e=0.

5. We give an example of an integrable Hamiltonian system satisfying the assumptions of
this paper. The Hamiltonian H, and first integral H, are given by the expressions

Hy = a (p1gs + Poga) — B (P12 — Padt) + 4 (P2 + P2 + (it + &:°)°]
Hy=p1gs — pogy; <0, B>0, 4= —afy2

The point O (0, 0, 0, 0) denctes a state of equilibrium of saddle-focus type, and the quantity
1= as0. A (,>0 exists such that when (¢>¢,, the manifold H,=C 1is homeomorphic toa
three-dimensional spherical shell, and the sphere bounded by this shell contains all levels
of the function H, with smaller values of (¢. From this it follows that all levels of the
function H; are compact and the trajectories of the vector fields I VH;(i=1,2) are therefore

defined for all te R.

We shall show that a trajectory exists which is doubly asymptotic to the point 0. Let
us perform the (noncanonical) coordinate change p,=rcos¢, p,=rsin¢, ¢ = pcosf, g, = psin0. The
initial system and the integrals H, and H, can be written in terms of these coordinates in
the form

r= —ar — 44p3cos (¢ — 0), p = ap + 4Ar° cos (¢ — 8) (5.1)
r¢" = Pr + 44p3sin (9 — 08), pO = Pp + 44%sin (¢ — 6) (5.2)
H) = arpcos (¢ — 0) 4 Prpsin (p — 6) 4 4 (4 pb)
H, = —rpsin (g — 6)

On the separatrix manifolds we have H;, =0 and H,=0. The set of solutions of the system
H,=0. H,=10 is determined by the conditions ¢=6 h=apr+ 4 (p* + ) =0, since p>0,r>0 ad <0.
Under these conditions (5.2) yields @)= Bt +86°0( =ft--0° Carrying out in (5.1) the sub-

stitution u=p'4 . r=p! — i, s= —4at and remembering that on the separatrix loop &= 0, we
obtain the following expression in the variables wu.v,s:u' = —v,v'= —u -+ 2u8. Thus we have u=
ch™ls. v = shsch-2¢ for the loop. Returning now tc the initial system, we obtain the following

one-parameter family of doubly asymptotic solutions:

Pyt B) = %, gy = May j=1. 2
(4; = 273 (ch 4at)™/* cos (Bt + 8); 4, = 27/ (ch 4at)~"/* sin (Bt + 6))
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To illustrate Theorem 1 and 2, we shall quote the results of computing the functions B (h

and 4,(8) for the concrete perturbations. In the first case p(r. &) = (g;p,. —tapy. (&1 = £) ¢ 1 and
tisin40 2Bn v-2
B(@) = ~ T (ch T )

and in the second case K (z, &) = ¢(p,® + ¢;?), while

dy (8) = 7o sin29 ch% <ch—§2——) '

6. The results obtained in Sect.l— 5 can be generalized to the case when the initial
system (1.1) has two nondegenerate singularities O, and O, of saddle-focus type, and a traject-
ory connecting them. We shall assume for definiteness that the trajectory belongs to the
intersection of the stable manifold W,'0;) with the unstable manifold Wo* (0,). As in Asser-
tion 1, we can show that in this case W' (0)) — {0} and W (0,) —{0,} coincide. If we de-
mand that the singularities O, and O, remain in the same place in the system (2.1) for all e.
and that in the case of Hamiltonian perturbations both these points also lie on the same level
H,+ K = const, then Theorems 1 and 2 can be applied totally to this case. It shouldbe noted
that (¢, 8) in the expressions (3.1) refer to the point O, and " ({t,0) to O,

Analogous results are obtained for the perturbations of an integrable system with a
doubly asymptotic trajectory towards the saddle type singularity (the eigenvalues A, 4 As,
A 5= A,), along which IVH, and [IVH, are independent. In addition, the results of this
paper can be extended to the case of nonautonomous, time-periodic perturbations p (z.f, f).
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