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ON THE EXISTENCE OF SEPA~TRIX LOOPS IN FOUR-DIMENSIONAL SYSTEMS 
SIMILAR TO THE INTEGRABLE HAMILTONIAN SYSTEMS* 

L.N. LHP.MAN and 1a.L UMANSKII 

A method analogous to the V.K. Mel'nikov method /I/ is used to derivethe conditions 
of existence of separatrix loops of the saddle-focus type singularity, for the 
systems similar to the integrable Hamiltonian systems. Many important and interest- 
ing effects appearing in the dynamic systems are connected with the presence of 
loops in the separatrices of the singularities. For example, a system with a loop 
of a saddle-focus separatrix with the positive saddle value has an enumerable set 
of periodic saddle-type motions /2/; the appearance of the saddle separatrix loops 
can represent the first of a sequence of bifurcations leading to the appearance of 
an attractor /3/. The existence of a separatrix loop in a finite-dimensionalsystem 
describing the travelling wave-type solutions of partial differential equations im- 
plies the presence of a soliton solution in the latter system /4/. 

1. Let us consider in R' the Hamiltonian system 

2' = IVH, (2) (1.11 

with a smooth Hamiltonian Hz(z) where 1 is a (4 x4) matrix in which a,, = a,* = - a,, = 
- 1 and the remaining elements are equal zero, and VH, (s) 

the"*;&tion H, (5). 
is the gradient vector of 

In what follows, when we say smooth, we mean the C"-smoothness unless 
otherwise stated. We assume that the system (1.11 is integrable, i.e. a smooth function HZ(t) 
exists, representing the first integral of the system. This means that the Poisson's bracket 
{HI, Hz) s (IVH,. VH,) of the functions HI and H, is equal to zero, where (., .) denotes the 

standard scalar product in R’. Sometimes we shall consider, together with the system (l-l), 
a Hamiltonian system with the Hamiltonian H&z). We assume that the above systems generate 
dynamic systems, i.e. every trajectory is continued onto all tEfP. A sufficient condition 
for this is e.g. the condition that the levels of one of the integrals be compact subsets in 
R4. 

Let the coordinate origin 0 be a singularity of the system (l.l), the roots of the 
characteristic equation of which are rt: cc, f i&, al,fll# 0 (the singularity is of the saddle- 
focus type). From the theorem on a stable manifold /5/ it follows that smooth, two-dimension- 
al stable Wo” and unstable WoUinvariant manifolds of the singularity Oexist. The functions 

H,(x) and H?(s) can be simultaneously reduced by a linear variable change to the form ( old 
notation is retained for the new coordinates) 

ffk (X) = Hh. (0) $ ak (PfJ, + P&) - Pk @,q2 - P&) + Fk (z), Fk (d = 0 (11 2 II’); k = 172 

In what follows, we assume: 
A) the quantity T = a, 2 B - a$, # 0; 
B) a trajectory rCWo"n WO” exists doubly asymptotic to 0. 

Condition A) means that H, and II, are independent in some neighborhood Ifof the point 0 (ex- 

cept, of course, for the point 0 itself), i.e. 
independent (**) . 

the vectors IQH,(x) and IVH,@) are linearly 
We shall call such a singularity nondegenerate. 

Proposition 1. Let conditions A) and 3) hold. 
and W,t” coincide, i.e. 

Then the closures of the manifolds Wa" 

ic to 0. 
all trajectories in %*- (0) (and in WC” -{O) ) are doubly asymptot- 

Proof. 
t = 0, 

Let f(i:xt be a trajectory of the system (1.1) passing #rough the point z at 
and let g (s ; 4 be the analogous trajectory of the system with the Hamiltonian Hz. 
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Since {H,,H,)rO. we have r (t; $ (s; J)J c g (s; ! (t; r)i [a]. Therefore we can determine the acticn -f 
the group R2 on the phase space R4 using the formula CD (t, s; X] = f (1; g (s: r)i, it. ~1 = R”. Any t:~o 
orbits of the action either do not intersect, or they coincide. As was shown before in t**), 
the manifolds W,< - (0) and WOu - (0) are two-dimensional orbits of the action Q. The exist- 
ence of the doubly asymptotic trajectory y implies that the above two-dimensional orbits in- 
tersect, therefore they must coincide,andthis completes the proof. Thus when conditions Ai 
and B] hold, a one-parameter family of trajectories doubly asynlptotic to the point 0 exists 
in the system (1.1). We denote the set of points R” through which the trajectories of +_he 
family pass, by W,. 

2. Let us consider a perturbed system 

5' = ZVH, (5) + p (5, E), E E R” (2.1) 

where ~(3, E) is a function CL- smooth in E(k>2) and smooth in x,p(t, 0) ~0. We shail 
also assume, without loss of generality, that ~(0, e) ~0. We construct in the neighborhood 
u of the point 0 a secant to the trajectory of the system (2.1). Restriction of (1.1) to WO" 
has a coarse focus-type singularity, therefore a smooth closed curve G can be chosen on WO”, 
transverse to the trajectories. Let so(e) be the parametric description of the curve 0 (0 e-Y 
0 < 23%). We take, at every point of r,(e), a two-dimensional plane h'e stretched over the 
vectors VH, (ZO (8)) (j = 1, 2). The plane Ns is orthogonal to the plane tangent to the manifold 
wo' at the point x,,(e), since the tangent plane is generated by the vectors IVH,(t, (6)) and 

ZVH,(x, (0)). Using this fact we can show that p>O exists such, that the union (over tij of 
the two-dimensional discs 11 x-x0(6)]] < p belonging to Ne forms a three-dimensisnai secant 
N homeomorphic to the full torus R2 x S. Clearly, N remains a secant for the system (2.1) 
at sufficiently small I] 811. 

When s = 0, the trace of Wd on N is represented by the curve a, which is aisothetrace 
of W~“on N. Since the stable manifold of the coarse equilibrium state depends smoothly on 
the parameter, it follows that when e#O, then the stable manifold vv~' of the singularity 
Ointersects transversally with N, and this intersection is therefore a smoothclosedcurve 
08' close to U. The smooth curve UC"= %“nN is determined in the same manner. The loops 

of the separatrices correspond to the general points of the curves ak and ~8". From this 
it is clear that, generally speaking, the curves cr,' and ecu do not intersect at fixed e# 0. 
However, if instead of an individual perturbed system we consider an at least two-parameter 
family of perturbations, then curves may exist in the parameter space with points to which 
systems with separatrix loops correspond. 

For the Hamiltonian perturbations p (2, E) = IV K (5, e) the manifolds W,” and WE” lie on 
the set Xe defined by the equation HI (x) + K (x, E) = H, (0) + K (0, E). In the neighborhood of 
the set W,,Z, is a small, three-dimensional submanifold everywhere except at the point 0. 
and the intersection of Ze and h'is homeomorphic to a two-dimensional ring. The curves GE' 
and 0% lie in this ring, and for this reason it is sufficient to consider a one-parameter 
family of perturbations. Below we shall discuss both cases. 

3. Let us consider a perturbed system of the form (2.1), where E = (el, .a.,) belongs to 
the neighborhood of the zero in R'. We denote by ze*(t, 8) the trajectory belonging to TV" e 
and intersecting, at t=o, the plane No. Such a trajectory exists and is unique. We 
determine the trajectory zreY(t. 0) in the same manner. The functions 1zs (f, e). SeV (t. 0) are 
smooth in t and 8 and C"-smooth in E, and can therefore be written in the form 

en = elLeZm , 1 n / = 1 + m, j,,x (i. 0) = Et n, (t, 0) a, (0, 0, e) = 0 (II & !I? 

where z,(t, 0) is a trajectory of the system (1) lying on ]lio" and intersecting .I'6 at t = (i 

(at the point &J (@)7 and 1 and m are nonnegative integers. 

Lemlna 1. The vector function &,,%(t,8)( x =s, U) is a solution of the following system of 
differential equations: 

E' -zz Id’H, (50 (t, 0)) 5 + P, (10 (t, 0). Etu” (t> o),. . .( Eij” (ty e), ., Ef, /nt-1 (t, 0)) (3.2) 

where #[I, (z) is the matrix of the second derivatives of the function fl,(x), i T j .< i n i - 1 

and the smooth vector function P, is determined by the right-hand part of the system (2.1). 
The solution satisfies the conditions 1) E,* (0, 9) E :ve; 2) fL,s (t, e) -0 as t - m. E,” (t. 8) -0 
as t--m, and is unique. 

The proof of this lemma is analogous to that of Theorem 4 in /l/, therefore we shallonly 

give it outline. Equations (3.1) for i,," (I, 4 are obtained by substituting (3.1) into (2.11, 
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differentiating the resulting identity 1 times with respect to Ed and m times with respect to 

e',, and setting P,=-~= 0 in the resulting identity. Condition 1) is obtained from (3.1) by 

setting t = 0 and taking due regard to the fact that $ (1~. 0) and I" (0, 0) belong to ~a at all 
Condition 2) follows from the usual estimates for the solutions lying on a stable mani- 

fo',d /l/. The uniqueness of the solution with conditions 1) and 2) follows from the fact that 
system (3.2) possesses an exponential dichotomy of solutions. 

Let us introduce the functions 

AI (8, E) = (CHj (I,, (e)), xes (0) - G” (0)) (i = 1,2), zeX (0) = tp” (0, 0) 

The vector .z~~(~)--~~~(~) clearly belongs to No. Therefore, by virtue of the linear independ- 
ence of the vectors VHi (x0 (0)) (i == j,2), Al2 + A2* = 0 if and only if ze* (e) = xE“ (e), i . e . the 
zeros of the system of equations Al@, E)= 0, AZ@, E) = 0 are in one-to-one correspondence 
with the single circuit loops of the separatrices of the singularity 0. 

Let us obtain explicit expressions for Ail@, E) and A?(O, E) from the right-hand parts 
of the system (2 .l) . To do this we consider the functions Di (t. 0, e) = (VHi (x0 (t, e)), G* (1, 
e) - 22 6, e)). Clearly, Dt (0, 8. e) = Ai (0, 8). Below we shall write for simplicity #Hi, QH, 
to denote d2H1(s,(t, e)), VHi(x,(t, 0)) respectively, and 

Then 

P,X = P, (z. (t, e), EloX (t, e),. . ., 6j"(t. 01,. . ., Et I+~ 6 w 

~~ (t, 8, E) = (QH~, 22 (t, e)) - (VH *, c (t, e)) 3 D,E (t, e, 4 - Dsv, 8, 8) 

In turn, by virtue of Lemma 1 we have 

(3.3) 

(3.4) 

For 1 nl> 1 we have 

4 G (h 0) = (d*Hi - IQH1, Lx (t, 8)) + (VH,, ~a%?~~ (t, e) + 

p,x) = (d*HiJVH,, EC (6 e)) -t- (vH,, ~d*H,gp(t, e)) + (vH,, P,X) 

and for i=l we obtain 

G A;,(t, e) = (daHl.IVH1,&,,X(t, e)) - (d*Hl.lQHl, &,“(L e)) + (QHI, P,“) = PHI, p,,“) 

where we utilized the fact that the matrix d2Hl 
For i = 2 we have 

is symmetric and matrix I is skew symmetric. 

& A& (t, 0) = (d*Hz.IQH,, Lx@, e)) + (VHa, Id2&E,,x(t, e)) + (QH2, I’,“) 

Let us make use of the identity obtained by differentiating in 5 the identities {H,, HE} = 
(KH, (z), VH, (5)) = 0. Then 

-& A"m(t,@= (QHs, P,") 

Integrating the resulting equations for Ai,‘@, 0) in t from 0 to +W and using conditions 2) of 
Lemma 1, we obtain 

A:,, (0, e) = - f (QH,, Pd) dt 
” 

and similarly 

We note that 

AL (0, e)= 5 (VH,, P,,“)dt 
-uz 

P&= PYO = +$ (G(G e).O), PA = P: =*(s,(t, e),o) 

Subsituting the resulting expressions into (3.31, 
we obtain 

taking (3.4) into account and setting t = 0. 

Ai (e, e) = - El& - Esdi2 - i E” [f(VX, 9 Pn’) dt + 
/nJ=z 0 
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f (VHi,Pxu) dtl -j- (VHi, a,(O, 8, e)-au(O,% e)) 
-cc 

(x0 (t,@),O))dt, i,i= 1,s) 
/ 

Theorem 1. Let 

B (8) = 4,4, - dl,d,i = 0, Z dij2 (8,) z 0, B' (8,) + 0 

at 8 = 8,. Then a neighborhood of the point (8,, 0, 0)~ 10, 2 n] x R' exists in which the 
solution of the system of equations A1 (8, E) = 0, A1 (8, E) = 0 is a smooth curve of the form 
Ez = f1 (El)? e = g1 (El) Or E, = f2 (Ea), 8 = g, (51) (jl (0) = gi (0) - 8* = 0, i = 1, 2). 

Proof. We assume for definiteness that 4, (8,) + 0. The system has a curve of solu- 
tions e, = 0, EI = 0, therefore point (e,, 0, 0) is a solution of the system. By virtue of the 
theorem on implicit functions there exists a neighborhood of this point in which the first 
equation has a solution ep = h(8, ei). We substitute this solution into the second equation to 
obtain AZ (8, ~,h (8,E,))= 'p (8, el) = 0. The point (e,, 0) is a nondegenerate critical saddle 
point of the function ~(8, ei). Indeed, at the point (8,, 0) 

since A, (8, 0, 0) E 0 (i = 1,2). 
The determinant of the matrix of the second derivatives of the function qJ (e, El) at the 

point (8,, 0) is equal to [B'(8,)d1z-' @,)I* (0. Since the equation ~(8, IQ= 0 has a solution 
&I = 0 it follows that in some neighborhood of the point (8,, 0) we also have the solution 

8 = gl (L,), gl (0) = 8,. For the initial system of equations we obtain the solution E, = h(g, (Q), 

~4 = fl (4, 6 = 65 (4 r and this completestheproof of the theorem. 

Corollary. A neighborhood of the point (0, 0) exists in the (E,, &*)-parameter space 
such, that every zero of the function B(8) corresponding to conditions of Theorem 1 has a 
corresponding smooth bifurcation curve passing through the point (0, 0) and corresponding to 
the loop of the separatrix of the singularity , intersecting the secant N at a unique point 
(kingle circuitl loop). 

lqote. By virtue of the results of /2/ an enumerable set of "multicircuit" loops, i.e. 
loops intersecting N more than once , exists in the neighborhood of the single circuit loop of 
separatrix. 

4. Let us consider the system (2.1). with Hamiltonian perturbation, i.e. ~(2, E) = IV K (r! 
E), EE 8’. As in SeCt.3, we introduce the functions A (8, E) and A, (e, E) which, in the 
case of a one-parameter family of perturbations, have the form 

c-a 

A,(f),&)= - E 
St 

VHi, IV G (x~~(t,@,O)j dt - 
-m 

&?'(~(VH,.P,')dt+ \ (V~,,I-',")+- 
n=2 " 
(VHi, a, (0, 0, E) - a,(O, i:)) = - edi (0) f . . . 

kNIla 2. There exists Ed > 0 such that A,(k), E)= U when 1 E(< e. if and only if 

X86 (e) = lceu (e). 

Proof. In the course of proving the lemma we write VHi(r,(0)) = Viii (i = 1,2). The suffic- 

iency of the conditions of the lemma is obvious. To prove the necessity we assume that 

~~"(0) +z,"(e) for some fixed E and e (the quantity e shall be chosen below). We introduce, on 

the two-dimensional disc Ng , the coordinates given by the formula z= z,,(@+ EVH,+nVH,. The 
points zes (0) and ~~"(8) lie on the curve described by the equation 

R (f, 'I, E) f H, (20 (0) + tVH, + rlVH%I,) -+ K(z, ('3) + kVrr,-+ nVH%, E) - H, (0) - K (0, E) 

We can apply the theorem on implicit functions to this equation, since R(0, 0, 0)= 0, as R;l(O. 

0, (I)= (Vtf##O. Solving the equation for 5, we obtain E= @((rl,e). Using the coordinates defin- 
ed above, we can write ~~~(0) and ~,~(t)) in the form 

zes (8) = Z" (8) + 5, vt1, + QVII,, z,U[8) = IQ (8) + SUVXI A 'l"VH, 

therefore we have 
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The derivative 0,,'(0, 0) = - (VH,, VH,)/ (VH,)r+O, therefore we have 

z; (6) - z: (0) = [ - ( (v$g?) + p (q*, d VHl + VH% ) I PI, - s) 

where p(%. E)-0 when ]q.]+]e]+O. By definition we have ZES (0) #Q" (% therefore Q--~#O. 

Scalar multiplying both sides of the last equation by VH,, we obtain 

As- (e. p) = 01, - q,) C ’ (;$$f?) + P (rhc, F) (VH,. VI&)] 

where T (VII,, VH,) is the Gramm determinant (different from zero, since the vectors VH, and 
V H, are linearly independent); qt-0 as c-0, therefore A%#0 at sufficiently small P 

which contradicts the initial assumption.' The lemma implies that in the case of Hamiltonian 
perturbations the splitting of the separatrix surfaces is determined by the zeros of a single 
function Af (6,, E). 

Theorem 2. Let dZ(fl,) = 0, &'(9*)# 0. Then a neighborhood of the point @*, 0) E IO, 
2n] X I?' exists, in which the equation A,,@, E) = 0 has a unique solution 0 = f(a), j(O)= &,,. 

Proof. The point (e,, 0) is a nondegenerate critical saddle point of the function AZ@, 

e), since at this point 

A2+++=$+o, _$& d;(e*)fo 

Since the equation A2 (0, E) = 0 has a solution e = 0, therefore it also has the solution 
e = f ct.), f (0) = 0,. 

Note. It can beshownthat on the set of the level 2, the manifolds W,* and WE” inter- 
sect transversally along the loop of a separatrix existing, according to Theorem2,when aJO. 

5. We give an example of an integrable Hamiltonian system satisfying the assumptions Of 
this paper. The Hamiltonian H, and first integral H, are given by the expressions 

H, = a (PI% + pz%) - b (plq, - pz%) + A ((~3 + PY + (q? + qs*)*~ 

H, = plq2 - pz’il; a < 0, B > 0, A = -dfi 

The point 0 (0, 0, 0. 0) denotes a state of equilibrium of saddle-focus type, and the quantity 
T= cr+:o. A ccl>0 exists such that when C>C, , the manifold Hl = C is homeomorphicto a 
three-dimensional spherical shell, and the sphere bounded by this shell contains all levels 
of the function H, with smaller values of C. From this it follows that all levels of the 
function H, are compact and the trajectories of the vector fields I VHi(r= 1,2) are therefore 
defined for all PER’. 

We shall show that a trajectory exists which is doubly asymptotic to the point 0. Let 
us perform the (noncanonical) coordinate change p1 = rcos cp, p1 = rsin cp, q1 = pcos 8, qz = p sin 8. The 
initial system and the integrals H, and H, can be written in terms of these coordinates in 
the form 

r' = --(1~ - 4Ap3 cos (+' - Q p. = ap + 4ArS cos ('F - 8) (5.1) 
7~' = fir T 4.4~~ sin (cp - e), pe’ = &I + 4_4rs sin (e -- e) (5.2) 
H, = arp cos (CF - 8) + prp sin (e - 8) + A (I* + ~4) 
Hz = +-p sin (9 - 0) 

On the separatrix manifolds we have H, = 0 and H,= 0. The set of solutions of the system 
fJ,= 0. H, = 0 is determined by the conditions cp= 8. h= apr+ A (pr++)=O, since p>O, r.>O. aA ~0. 

Under these conditions (5.2) yields e (t) = 13t 1 80. e (0 = fit + 80. Carrying out in (5.1) the sub- 
stitution U = p'+ rJ. t‘= r" - 9,s = -4at and remembering that on the separatrix loop h = 0, we 
obtain the following expression in the variables u. v, s: u' = --L.,u'= --u +29. Thus we have ~1= 
rh-1s. L' = ah s ch-2a for the loop. Returning now to the initial system, we obtain the following 
one-parameter family of doubly asymptotic solutions: 

pj (t. 8) = ea’dj. qj = eeatAj. j = 1. 2 
(d, = P'J (cl1 4af)+ cos (@ + 8); A, = 2-‘/’ (ch 4at)+ sin (fit + e)) 
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To illustrate Theorem 1 and 2, we shall quote the results of computing the functrons 6! !!I) 
and d,(e) for the concrete perturbations. In the first case p (I. E) = (~,p?. --t,pl. (el -- t':i qr, 11) and 

and in the second case 6 (z, E) = e(p,* + Q~?), while 

6. The results obtained in Sect.l- 5 can be generalized 
system (1.1) has two nondegenerate singularities 0, and 0, of 

to the case when the initial 
saddle-focus type, and a traject- 

ory connecting them. We shall assume for definiteness that the trajectory belongs to the 
intersection of the stable manifold WO'\O,) with the unstable manifold U%"(O,). As in Asser- 
tion 1, we can show that in this case W,‘(O,) - (0,) and W@" (Or) -{O,) coincide. If we de- 
mand that the singularities 0, and 0, remain in the same place in the system (2.1) for all F. 

and that in the case of Hamiltonian perturbations both these points also lie on the same level 
H,+ K = const, then Theorems 1 and 2 can be applied totally to this case. It shouldbe noted 
that z8‘(t, 9) in the expressions (3.1) refer to the point 0, and t,"(t, 0) to 0,. 

Analogous results are obtained for the perturbations of an integrable system with a 
doubly asymptotic trajectory towards the saddle type singularity (the eigenvalues -i-h,, t h?, 

&I=#= h2)r along which IVHl and IVH, are independent. In addition, the results of this 
paper can be extended to the case of nonautonomous, time-periodic perturbations p (X.F. f). 
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